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Abstract. A detailed model for the electronic properties of self-assembled InAs/GaAs quantum
dots (SADs) is presented, with emphasis on inter-level transitions and many-body effects. The
model is based on the self-consistent solution of three-dimensional Poisson and Schrödinger
equations within the local (spin-) density approximation. Nonparabolicity of the band structure
and a continuum model for the strain between GaAs and InAs results in position- and energy-
dependent effective mass. The electronic spectra of SADs of various shapes have been determined
with intraband level transitions and mid-infrared optical matrix elements. Shell structures obeying
Hund’s rule for various occupation numbers in pyramidal SADs agree well with recent capacitance
measurements. It is shown that many-body interactions between orbital pairs of electrons are
determined in a first approximation by classical Coulomb interaction.

1. Introduction

Self-organized islanding of InAs on a GaAs substrate induced by lattice mismatch between the
two semiconductors is currently the most powerful and popular technique for the fabrication of
high-density, high-quality, and relatively regular quantum dot structures. The high confinement
present in these self-assembled structures make them ideal candidates for investigation in
studying the physics of highly confined few-electron systems. From a practical standpoint,
proposed applications of quantum dots such as in lasers [1], spectral detectors [2], and optical
memories [3] have contributed to the proliferation of interest in these zero-dimensional systems.

Very recent studies have demonstrated the electronic shell structure and spin effects in
lithographically defined quantum dots containing more than 40 extra electrons [4]. These
‘artificial atoms’ have shown shell filling with spin ordering predicted by Hund’s rule. In
other experiments using small self-assembled quantum dots (SADs) containing up to six extra
electrons [5], the shell structure in the dots displayed an energy spectrum very different from
the simple Coulomb blockade picture observed in metallic and mesoscopic structures. The
combination of capacitance and far-infrared spectroscopy in these experiments [5] has provided
experimental information on level separation, as well as on the electron–electron interaction
energy of the s and p states within a single InAs–GaAs quantum dot.

In this study, we investigate the quantum mechanical properties and electron–electron
interaction within single quantum dots [6–8], using a realistic structure with electron inter-
actions treated within the density functional theory (DFT) [9]. The structures are complete
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Figure 1. A schematic representation of the SAD used in the present work.

multilayer devices containing an InAs SAD embedded in a GaAs matrix (figure 1). The
number of electrons in the dots is controlled by applying a voltage to a metal gate on top of the
device. The strain in the SAD, wetting layer, and surrounding GaAs matrix is calculated using
a continuum model described previously [9, 10]. The bulk electron effective mass and the
band diagram are considerably modified by the strain in the region of the dots, becoming
position dependent. In order to accurately determine the bias voltage at which charging
occurs, we have used the concept of transition states. We have used the local spin-density
approximation (LSDA) to calculate the many-body interaction [11] and the energies of possible
spin configurations in the dot, showing that the dot filling indeed follows Hund’s rule.

2. The quantum dot model and electronic structure

In the DFT framework, the three-dimensional (3D) Schrödinger equation, written in the
effective-mass approximation (EMA), reads [9]{

− h̄
2

2
∇ [M−1∇] + V (r)

}
ψn(r) = Enψn(r) (1)

whereM is the electron effective-mass tensor and the potential energyV is given by

V (r) = Vext(r) + Voff (r) + Vc(r) + VP(r) (2)

whereVext(r) is the potential due to an externally applied voltage,Voff (r) is the conduction band
offset,Vc(r) is the conduction band strain potential, andVP(r) is the piezoelectric potential.
Due to strain, the electron effective mass becomes anisotropic, leading to a mass tensor given
by diag(M) = (mxxmyymzz) and zero off-diagonal terms [12]. In the usual case of sample
growth along the crystal direction (001), the electron masses along the plane perpendicular to
the growth direction are equal, i.e.mxx = myy .

Figure 1 shows a single-quantum-dot device which consists of a highly doped (1018 cm−3)
420 Å GaAs substrate, followed by a 450 Å Al0.3Ga0.7As barrier layer. The active region
consists of two layers of undoped GaAs, 300 Å wide, surrounding a 6 ÅInAs wetting layer
and a InAs pyramid. A highly doped (1018 cm−3) 260 Å GaAs cap and a metallic gate complete
the device. We have assumed a conduction band offset1Ec = 770 meV between bulk GaAs
and bulk InAs (ratio1Ec/1Eg = 70%), and bulk electron effective masses in GaAs and
InAs of 0.067me and 0.023me [13], respectively, whereme is the bare electron mass. As
described below, these effective masses and the conduction band offset change considerably as
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strain is considered in the calculation (the calculation of strain is indispensable for an accurate
simulation of the InAs–GaAs heterostructure due to its rather large lattice mismatch, of the
order of 7%). All of the calculations correspond to 4.2 K.

The strain tensor is obtained from the minimization of the elastic energy of the system [14].
This procedure provides the strain tensor componentsεxx , εyy , andεzz, as well as the shear
componentsεxy , εxz, andεyz. The hydrostatic and biaxial components of the strain, defined as

εh(r) = εxx(r) + εyy(r) + εzz(r) (3)

εb(r) = εxx(r) + εyy(r)− 2εzz(r) (4)

respectively play a major role in the electronic structure of the dot. Ignoring the split-off bands,
one can derive the band-edge energies at the Brillouin zone centre(k = 0) [13]:

Vc(r) = Eg + acεh(r)

Vhh(r) = avεh(r) +
b

2
εb(r) (5)

Vlh(r) = avεh(r)− b
2
εb(r)

whereEg is the unstrained band-gap energy, andVhh andVlh are the heavy-hole and light-hole
bands, respectively. The deformation potentialsac, av, andb for InAs and GaAs are given in
reference [9].

Figure 2. (a) The strain potential; (b) perpendicular and in-plane electron effective masses along
the z-direction through the tip of the pyramid (in units of the bare electron mass). The pyramid
base size is 200 Å and the height is 100 Å.
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Figures 2(a) and 2(b) show the strain potential and electron effective masses along the
z-direction, through the tip of the pyramid. Notice the large value of the strain potential
which reduces the conduction band offset between the two materials, and the considerable
modification of the bulk effective mass, by a factor of two on average, which is in good
agreement with the work of Cusacket al [15]. The spikes near the tip of the pyramid have a
numerical origin, and are caused by the difficulty in calculating the strain components around
the edges of the pyramid.

The presence of the shear strains in the InAs–GaAs interfaces leads to the appearance of
a polarization charge and its associated piezoelectric potential, which reduces the symmetry
of the system, lifting some of the degeneracies calculated for unstrained pyramidal quantum
dot systems. Piezoelectric effects in single dots of realistic sizes are very small, changing the
eigenvalues of the system by less than 1 meV, and can be neglected [16]. However, they may
be considerably larger in systems of closely spaced dots since their amplitude is different in
each dot (see reference [12]).

Using time-independent perturbation theory up to the second order, we obtain the following
expressions for the diagonal components of electron effective-mass tensor [12]:

m∗z(Ei, r) =
m∗(Ei − Vlh(r))

Eg

m∗x,y(Ei, r) =
m∗(Ei − Vhh(r))(Ei − Vlh(r))

Eg(Ei − 0.75Vlh(r)− 0.25Vhh(r))

(6)

whereEi is the ith eigenvalue, andm∗(Ei, r), m∗z(Ei, r), andm∗x,y(Ei, r) denote bulk,
perpendicular, and in-plane electron effective masses (the wetting layer lies in thexy-plane) of
an electron with associated eigenvalueEi . The remaining components of the effective-mass
tensor are zero. The presence of the eigenenergyEi in equation (6) is for the correction of a
large separation between the eigenstates and the conduction band edge. A detailed derivation
of equation (6) including a comparison with an eight-bandk · p calculation can be found
elsewhere [17].

The Schr̈odinger equation is solved using the iterative extraction–orthogonalization
method (IEOM) [18]. In this method a functional of the Hamiltonian is applied to a guess state
iteratively to extract the ground state of the operator. Higher states are extracted by repeating
the procedure for several initial guess states and orthogonalizing all the resulting states after
each iteration of the Schrödinger equation. The major advantage of this method is its efficiency
resulting from its ability to generate an arbitrarily small number of eigenstatesNE . As a result,
the method scales asN2

ENG, i.e., is linear inNG, whereNG is the number of grid points. The
Poisson equation is solved by combining Newton’s technique with a successive over-relaxation
method.

Figure 3 shows the first ten eigenvalues of empty dots as functions of the dot base length
(also called the base diameter), keeping the wetting layer width fixed. The eigenvalues were
calculated with respect to the average conduction band edge position in the barrier. Figure 3
also shows the approximate depth of the well. The notation(ninjnk) corresponds to the
number of nodes of the eigenfunction in thex-, y-, and z-directions, respectively. The
eigenvalues were only calculated while the states remained bound or quasibound. Notice
the slight splitting between the (100) and (010) states which is due to the piezoelectric effect.
As the eigenvalues approach the top of the well, the slopes of the curves tend to decrease, as
a result of deeper wavefunction penetration in the barrier region. For energies above the well
height, the corresponding eigenfunctions spread over the wetting layer, becoming those of a
two-dimensional electron gas.
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Figure 3. The approximate well depth (thick solid curve) and eigenvalues of the Hamiltonian
as functions of the dot diameterd. The eigenvalues were calculated with respect to the average
conduction band edge in the barrier. The first few states represented, from low to high energy, are
(000), (100), (010), (110), (200) + (020),(200)−(020). The notation (n1n2n3) denotes the number
of wavefunction nodes in thex-, y-, andz-directions. Pyramid height:h = d/2. The curves are
guides for the eye.

Figure 4. Projections of the states (200) + (020) (top) and (200) − (020) (bottom). Notice the
lobes of the top state along the diagonals (crossed lines) of the base of the pyramid (square box),
lowering its energy with respect to the more confined bottom state.

Ignoring the piezoelectric effect, the Hamiltonian of the quantum dot is invariant under the
symmetry operations of the group C4v [19], which allows the wavefunctions to be symmetrized
according to the irreducible representations of this group. It can be easily verified that only
p-like states (such as (100)) can be degenerate, while all other degeneracies are accidental.
That explains why the states (200) and (020) are not degenerate in a finite-barrier pyramid,
even though they are degenerate in a square well. In the latter case, degeneracy occurs because
the Hamiltonian allows the separation of variables. One can also show that the irreducible
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representations of those two states are the linear combinations (200) + (020) and (200)−(020),
shown as the fifth and sixth curves going from the bottom to the top of figure 3 (the solid curve
with stars and the dashed curve with crosses, respectively). Perhaps this counterintuitive result
can be more easily understood with the help of figure 4. It shows that the projections of the
states (200) + (020) and (200)− (020) are very different, and thus are affected differently by
the pyramidal confining potential [9]. As a result, the energies of the two states do not need
to be the same. Our calculations agree well with those of reference [15] for the range of sizes
investigated in that work. As discussed previously, these eigenvalues may change considerably
if a full eight-bandk · p calculation is performed [17].

The quantum dot shape can sometimes be controlled during the experiment but,
particularly in the case of SADs, the shape is a result of the growth process and must be
measured. Scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) [20],
have shown that dots can grow as faceted pyramids or with rounded lens shapes. The shape
is dependent on the growth process, and even shape transitions have been observed [20].
The reduced symmetry of square dots causes degeneracy splitting, so infrared absorption and
photoconductivity experiments may distinguish between lens-like and pyramidal dots.

The 3D rotational symmetry of atoms leads to the quantization of angular momentum and
description in terms of the quantum numbersl andml , or equivalently the notation s, p, d, f , . . ..
Quantum dots have reduced symmetry and should not be labelled in this manner. Nevertheless,
we will adopt the notation 1s, 2px , 2py , 3dxy , 3px , 3dx2−y2, and 2s to describe the six lowest
states so that our results may be compared to those in existing literature and as an aid in
comparisons between lens-like and pyramidal symmetries. In effect, the states in a lens should
be labelled by the irreducible representations of the C∞ group [21]: 1a1 (1s), 1e1 (2px , 2py),

Figure 5. The single-particle energies of different-shaped potentials for 200× 200× 100 Å3

dots with me = 0.05. The round lens (D = 200 Å, h = 100 Å) and parabolic dots
(wx = wy = 0.25wz meV) have degenerate d states, and the reduced symmetry of the pyramid
and box cause the 3dxy state to lie below the 3dx2−y2 state. The separable potentials for the box
and parabolic potentials have an additional degeneracy between the 2s and 3dx2−y2 states, which
is lifted by interactions.



Electronic structure in self-assembled quantum dots 5959

1e2 (3dxy , 3dx2−y2), and 2a1 (2s), where the expressions in parentheses are the notation used
by us. As mentioned before, for a pyramid the symmetry group is C4, and proper labelling is
1a1 (1s), 1e1 (2px , 2py) 1b2 (3dxy , 3dx2−y2), and 2a1 (2s). The effect of symmetry reduction
from a lens to a pyramid is to break the degeneracy of the d states, leading to a lower-energy
state 3dxy with lobes in the corners of the confining potential, and a higher-energy state 3dx2−y2

with nodes in the corners of the potential. The degeneracy in states with odd values of angular
momentum is unaffected by a reduction to pyramidal symmetry. One weakness of our adopted
notation is that the 2s state actually contains a linear combination of atomic-like 2s and 2pz

states, an effect which shows up in thez-polarized dipole selection rules.
Figure 5 shows the comparison of the lowest single-particle eigenstates for lens and

pyramidal dots, as well as a couple of simple theoretical models: a hard-wall rectangular box
and a parabolic potential. The box and parabolic potentials exhibit an accidental degeneracy,
due to the separability of the degrees of freedom in thex-, y-, andz-directions in the single-
particle Schr̈odinger equation for these potentials. The box and parabolic wavefunctions are
often represented by the three quantum numbers (nx, ny, nz), which refer to the numbers
of nodes in thex-, y-, and z-directions, respectively. States (1, 0, 0) and (0, 1, 0) are
degenerate, as are states (2, 0, 0) and (0, 2, 0). The (1, 0, 0), (0, 1, 0) pair corresponds
to the (2px , 2px) degenerate pair present in both the square and circular symmetry, but the (2,
0, 0), (0, 2, 0) pair must be recombined to get the 3dx2−y2 = [(2, 0, 0) + (0, 2, 0)]/

√
2 and

2s= [(2, 0, 0) − (0, 2, 0)]/√2 states. Thus these separable potentials contain an accidental
degeneracy between the 3dx2−y2 and 2s states that is lifted by a slight change in the confining
potential or the introduction of interactions [9].

The selection rules for dipole-allowed transitions are determined by the requirement that
〈9i |r · ê|9f 〉 be nonzero, wherêe is the electron polarization operator, and9i and9f are
the many-body initial and final states, respectively. For circular symmetry, the allowed
transitions are1lz = ±1 for x-, y-polarizations and1lz = 0 for z-polarization. In the

Figure 6. Computed dipole matrix elements for transitions between different states for lens- and
pyramid-shaped quantum dots. Transitions from 3d states up have not been considered.
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case of square symmetry, group theory gives the rules as e↔ {a1, a2, b1, b2} becausex-,
y-polarizations andz-dipole transitions only occur between states of the same symmetry. In
the case of charged quantum dots, the same transition rules for both shapes:x-, y-transitions,
2px.y ↔ {1s, 3dxy, 3dx2−y2, 2s}, and one allowedz-transition, 1s↔ 2s, exist.

We show calculated IR absorption spectra for a pyramidal dot in figure 6. The Hartree
energy shifts the energy of the 1s state more than those of other states, since this state is sited
at the centre of the dot. The result is that the 1s↔ 2px,y transition overlaps the energy
of the transitions from the 2px,y to higher states [22]. This can give the appearance of
a single transition, when, in fact, several transitions contribute to a spectral line. Also, it
would be possible to incorrectly associate these evenly spaced transitions in this pyramidal
dot as indicative of a parabolic confining potential. The prominent split of the energy for the
transitions to the 3dxy and 3dx2−y2 states in our calculations show the breaking of the axial
symmetry in the dot.

3. Local spin-density approximation and many-body effects

The quantum mechanical correction of many-electron interactions in the context of device
physics is calculated using the LSDA of the Kohn–Sham DFT [23]. In this approximation,
the classical electrostatic repulsion among electrons (Hartree potential), and the quantum
mechanical correction due to exchange and correlation are added to the total potentialV (r)

in equation (2). The Hartree potential is obtained by solving self-consistently Poisson’s
equation (9), while the exchange–correlation energyExc[nα, nβ ] is a function of theα-
electron andβ-electron densitiesnα(r) andnβ(r), whereα andβ denote up and down spins,
respectively. The exchange term becomes not only a function of the total charge density
n = n↑ + n↓ but also a function of the polarization parameterζ ,

ζ = n↑ − n↓
n

. (7)

The Kohn–Sham equations (1) and (2) including many-body corrections only provide the
ground state of the system and its total energyET. A rigorous way of determining the number
of electronsN in a quantum dot with the electron charge as a good quantum number is to
minimizeET(N), for N = 1, 2, . . . , Nmax. This minimization should be repeated whenever
the external voltage biasVg is changed. The use of only eigenvalues to determine the charge in
the dot, where charging occurs whenever an eigenvalue crosses the Fermi level, is only correct
in the limit of weakly interacting electron systems.

However, the Kohn–Sham theory is not restricted to integer numbers of electrons in the
system. DifferentiatingET with respect to the noninteger occupation numberni of level i one
obtains

∂ET

∂ni
= εi . (8)

Equation (8), the Janak theorem [24], provides a meaning for the eigenvalues of the Kohn–
Sham equation. Integrating equation (8) betweenN andN + 1 one obtains the so-called Slater
formula [25]:

ET(N + 1)− ET(N) =
∫ 1

0
εLAO(n) dn ≈ εLAO

(
1

2

)
(9)

where εLAO corresponds the eigenvalue of the lowest available orbital. The last step in
equation (9) is exact ifεLAO is a linear function of the occupation number. In order to determine
whether there areN orN + 1 electrons in the dot, one defines the transition state as the state
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containingN +0.5 electrons. Ifε( 1
2) is positive, thenET(N +1) > ET(N), and the dot contains

N electrons; otherwise it containsN + 1 electrons [9].
Figure 7 shows the number of electrons in a pyramidal quantum dot with a 200 Å base

diameter and a height of 70 Å as a function of the gate voltageVg. Two curves are shown,
corresponding to charging sequences which obey and disobey Hund’s rule. When Hund’s rule
is obeyed it means that the charging of the fourfold-degenerate second level follows the spin
sequence 2p↑x2p↑y2p↓x2p↓y . The curve that does not follow Hund’s rule was obtained by charging
the second level according to the spin sequence 2p↑

x2p↓y2p↑x2p↓y . The third possibility, namely
the spin sequence 2p↑x2p↓x2p↑y2p↓y , was not considered because it will clearly be unfavourable
due to the intense Coulomb repulsion between the 2p↑

x and the 2p↓x electrons resulting from
their large wavefunction overlap. The step size obtained with the LSDA corresponding to the
charging of the fourth electron (N = 3) is longer for the charging of the dot according to
the spin sequence 1s↑1s↓2p↑x2p↓y than for 1s↑1s↓2p↑x2p↑y , indicating that indeed Hund’s rule is
followed by this system. The electron–electron interaction energy difference between the two
spin configurations for four electrons in the dot is∼3 meV.

Figure 7. The number of electrons in the dot as a function of the gate voltageVg in the case of

obeying Hund’s rule (the second-level population following the spin sequence 2p↑
x2p↑y2p↓x2p↓y ),

and disobeying Hund’s rule (the second-level spin sequence is 2p↑
x2p↓y2p↑x2p↓y ). The dotted curve

coincides with the solid curve whenever the dots are not visible. Pyramid base size= 200 Å and
height= 70 Å.

The addition of the fourth electron following Hund’s rule is less costly because of the
presence of exchange interaction (attractive) in this case, but not if the spin of the fourth
electron is different from the spin of the third. Analogously, the step corresponding to the
charging of the fifth electron(N = 4) is shorter for the sequence 2p↑x2p↓y2p↑x2p↓y because the
fifth electron, either in the 2p↑x or 2p↓y state, interacts by exchange with one of the two electrons
already in the second level, while, according to Hund’s rule, the fifth electron does not interact
by exchange with either of the other two because of their different spin states.

The local density approximation DFT has been widely used to calculate the electron–
electron interaction in dots [9, 12, 18, 26–29] because of its simple implementation and
negligible demand for computer time. However, the LSDA theory is an approximate theory,
well known for high-accuracy calculations as well as erroneous predictions of the physical
properties of some systems [30]. In particular, the experience with the LSDA for atoms and
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Figure 8. Contributions to the energy of a 200×100 Å pyramidal dot as a function of the occupation
N , calculated both in the LSDA and using the quantum Monte Carlo (QMC) technique. Differences
between the LSDA and QMC results are not apparent on the energy scale considered in this figure.
This clearly shows the small effect of interactions beyond the Hartree (mean-field) level.

molecules may not carry over to quantum dots, since the confining potentials and electron
densities can be very different. In figure 8 we compare the results obtained with the LSDA
in pyramidal SADs against those obtained with the diffusion quantum Monte Carlo (DMC)
method, which provides an exact treatment of the many-body interactions [31]. We choose
to investigate this particular dot shape because its geometry is particularly challenging from
a computational viewpoint; therefore our conclusions will be more general. Figure 8 shows
the values of the different components of the total energy as a function of dot occupation.
Differences between the LSDA and QMC results are not apparent on the scale of the figure.
This figure clearly shows that the external potential energy and kinetic energy are much larger
than the interactions. In other words the interactions may enter as a perturbative effect from
the noninteracting system. The reason for this can be seen from the scaled electron density.
Then energy and length scales for the electron interaction are scaled by the dielectric and
mass, so the effective Bohr radius isa∗0 = ε/m∗a0 ≈ 150 Å and the effective Hartree energy
is Ha∗ = ε−2m∗ Ha ≈ 7 meV. If we approximate the electrons as uniformly occupying the
interior of the dot, we obtain an effective electron density ofrs ≈ 0.46N−1/3, which is rather
high. In fact, the electron gas has a well-known ground-state energy expansion for small
rs [32]:

E = 2.2099r−2
s − 0.9163r−1

s − 0.094 + 0.0622 ln(rs) + · · · (10)

where the first term is the kinetic energy, the second term is the exchange, and the remaining
terms refer to correlation energy. For the case of six electrons in the dot,rs ≈ 0.25, and
the expansion givesEk = 1440 meV,Ex = 151 meV, andEc = 0.6 meV. Although the
comparison between these very different electronic systems cannot be stretched too far, this
does show that our energy scales are reasonable for a highly effective electron density. The
leading effect of the interaction is the Hartree energy, with small corrections for exchange and
still smaller for correlation.



Electronic structure in self-assembled quantum dots 5963

4. Orbital-pair interactions

The interaction between pairs of electrons occupying different or the same spatial or spin state
can also be determined from the total electron–electron interaction energies. In the case of
the individual electrons occupying the same spatial state, the spin states are constrained to
be different, whereas for different spatial states the individual spin states may be the same or
different.

The total electron–electron interaction energy forN electrons,

Eee(N) = EH(N) +Exc(N)

is the sum of the repulsive Hartree energy,EH(N), and the attractive exchange–correlation
energy,Exc(N). In the single-particle picture,Eee(N) involves the sum of interactions between
pairs of electrons in different single-particle states—the so-called orbital-pair interactions. For
example,Eee(2), the interaction between two electrons occupying the s-type ground state,
hereafter referred to as the s–s interaction, is the Hartree energy forN = 2, and is designated
asEss. Since the two electrons are of opposite spins, the exchange interaction is absent. For
N = 3 the many-body ground-state configuration has two electrons in the s state, and one in
the px or py state, represented as 1s↑, 1s↓, 1p↑x . Eee(3) can then be written as

Eee(3) = Ess+EA
ps +EP

ps (11)

whereEA
ps andEP

ps denote, respectively, the interaction between the p and s electrons (p–s
interaction) with anti-parallel and parallel spins. From the above equation, the average p–s
interaction,Eps = (EA

ps + EP
ps)/2, can be computed if we assume that theEss-interaction

calculated previously does not change withN in a first approximation. This is quite reasonable
for SADs, since the strong confining potential and the symmetry of the s state would prevent
any appreciable deformation of the s wavefunctions. The average p–s interaction is then given
by

Eps= (Eee(3)− Ess)/2. (12)

Following the above procedure,EP
pp andEA

pp denoting the average interaction between two p
orbitals (the px–px or the px–py interactions) of parallel and anti-parallel spins, respectively,
are given by

EP
pp = Eee(4)− Ess− 4Eps (13)

EA
pp = (Eee(5)− Ess− 6Eps− EP

pp)/2 (14)

where,EP
pp used in equation (14) is that computed from equation (13). Alternatively,EP

pp and
EA

pp can be determined fromEee(6), and are given by

EP
pp = (Eee(6)− Ess− 8Eps− 4EA

pp)/2 (15)

EA
pp = (Eee(6)− Ess− 6Eps− 2EP

pp)/4 (16)

whereEA
pp used in equation (15) is computed from equation (13), andEP

pp in equation (16) is
computed from equation (15). Following the above approach, interactions involving the next-
higher d state, i.e., d–d, d–p and d–s, can also be computed if the d state is triply degenerate.
This, however, is not the case in SADs since the degeneracy of the d state is lifted by the
pyramidal symmetry of the confining potential [33,34]. Hence, in the present work we do not
go beyond the p–p interaction.

We have estimated pairwise electron–electron interaction energies from the DFT using
equations (12)–(16). Table 1 summarizes those results and compares them with the values
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Table 1. Charging energy per electron pair (in meV) in single SADs.

Interaction type Calculated Measured

s–s 22 ∼ 23
s–p ∼ 15 ∼ 7
p–p ∼ 13 ∼ 18

inferred from the capacitance data of Frickeet al [5]. Differences between energies obtained
from calculations and inferred from measurements may result from our assumption that the
different types of interaction (s–s, p–s, or p–p) remain unchanged as more electrons are added to
the dot. A second source of error in our calculation is the exclusion of inter-dot repulsion, which
should push the electrons closer together inside the dot. However, as we have already pointed
out, for dot densities of 1010 cm−2, the inclusion of inter-dot effects should change our results by
less than 1 meV by pushing the electrons in the dot closer together. Finally, the approximation
used to calculateEH may lead to some correction in our calculation. As far as the analysis of the
experimental data is concerned [5], it included the image charge effect but excluded inter-dot
repulsion. In fact, these two competing effects nearly cancel each other for dot densities in the
range (1–10)× 1010 cm−2. The analysis of the experimental data also excluded the presence
of a charged interface between the gates (the layer of dots charged with one electron each).
Indeed, the presence of the layer of charged dots between the gatesdecreasesthe electron–
electron interaction energy by∼γdot× 3 meV, whereρdot = γdot× 1010 cm−2 is the density
of dots in the plane. Because this correction is considerable and is linear inγdot, it is clear
that the extraction of the electron–electron energy from the experimental data requires precise
knowledge of the dot density.

Because approaches like ours can be computationally expensive and time consuming, we
propose a simple approximation that requires the computation of onlyEss, with the remaining
interactions being deduced from the former ones. Such an approximation might be useful
for quick estimates of electron–electron pair interactions. The proposed method is based on
the observation that in the EMA/LSDA framework [9] the Hartree energy of a quantum dot
accounts for most of the electron–electron interaction energy, while the exchange–correlation
energies account for a small correction after the self-interaction energy part of the exchange
is subtracted [34] because the Hartree energy scales asaN2, where the constanta, evaluated
atN = 2, isEee(2)/4; we can write

Eee ' Ess

(
N

2

)2

. (17)

Substituting forE(N) from equation (17) in equations (12), (13), (14), (15), and (16), the
following approximate forms forEps, EP

pp, andEA
pp are obtained:

Eps' 0.625Ess (18)

EP
pp = EA

pp ' 0.5Ess. (19)

In order to investigate the accuracy of the estimate, we compared the pair interactions
obtained from the LSDA with those obtained from our approximations for four different SADs:
three lens-shaped dots (a truncated sphere) whose base×height values were 150×75 Å2 (dot A),
200× 100 Å2 (dot B), 400× 200 Å2 (dot C), and a pyramidal dot with base× height equal to
200× 100 Å2.

Figure 9 shows the variation of the interactions for the four SADs, obtained from equations
(17)–(19) as well as from EMA/LSDA calculations. It is seen that, in all of the cases, the s–s
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Figure 9. Pair interaction energies estimated from equations (18) and (19) (solid curves),
and computed from equations (12)–(16) (dashed curves), for lens-shaped dots with diameter
(D) × height (H) equal to (a) 150 Å× 75 Å, (b) 200 Å× 100 Å, and (c) 400 Å× 200 Å,
and for (d) a pyramid-shaped dot withD × H = 150 Å× 75 Å. EP∗

pp andEA∗
pp were computed

using equations (15) and (16).

is the strongest of all of the interactions. This arises from the fact that the s wavefunction
has a smaller spatial spread compared to, say, p or d wavefunctions, thus squeezing the s
electrons. Our calculations show that the contribution of exchange–correlation effects to the
orbital-pair interaction energies is small—less than 15% ofEss for all of the dots. This is
reasonable in high-electron-density systems such as SADs where the confinement is strong.
It is easily seen that, for very smallrs, quantum many-body effects (the last three terms in
equation (10)) constitute only a small fraction of the total energy which is dominated by the
kinetic energy (the first term in equation (10)) of the order of 100 meV, the electron–electron
repulsion being comparatively weak ('20 meV) [9]. Nevertheless, the effect of (attractive)
exchange interaction is seen clearly in the lower values of the p–p interaction for the parallel
spin, while it is absent from the anti-parallel interactions.

As far as the interaction values estimated from our approximations (equations (17)–(19))
are concerned, two features are noticeable in figure 9: firstly, they are consistently lower than
the interactions computed from LSDA calculations; and secondly, unlike the latter values, they
are identical for both parallel and anti-parallel spins. The first feature arises from the nature
of our approximation—the constanta in the expressionEee(N) = aN2 underestimates the
interactions forN > 2. This can be explained noting the fact that a better approximation,
accounting for the exchange and correlation effects, is

E(N) = (α − βN−2/3)N2 = γ (N)N2

with γ (N)→ α for largeN , andα, β > 0. Hence from the substitutiona = α− β/22/3 with
a = Eee(2)/4 forN = 2, it is clear that

α = Eee(2) + β24/3

4
> a
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Figure 10. Eee(N)/aN
2 for various values ofN for a SAD. A value of 1 corresponds to the

approximation ofEee(N) by a quadratic form.

thus the quadratic approximation results in an underestimation ofEee(N) and the orbital-pair
interactions. This point is illustrated in figure 10 which shows the variation ofEee(N)/aN

2

with a = Eee(2)/4 as calculated with the LSDA for several kinds of dot. In this figure a
quadratic dependence of the electron–electron interaction should be represented by a horizontal
line atEee(N)/aN

2 = 1. It is clear thatEee(N) shows significant departure from the quadratic
dependence onN for SADs, which can be accounted for by the exchange and correlation effect.
The second feature is due to the fact that the quadratic Coulomb approximation toEee(N)

does not address explicitly spin-dependent quantum effects such as exchange and correlation.
While these exchange and correlation effects make a greater contribution to the interaction
energies at lowN , they constitute a gradually decreasing percentage of the total electron
energy with increasingN , thereby bringing our estimated values closer to the computed ones.
Considering that our scheme is meant to give only an estimate of the interactions, the resulting
35% discrepancy should be acceptable in most cases.

Table 2. Values of the characteristic length scaler0 andEss for various SADs.

Dot Base,b (Å) Height,h (Å) α/r0 (Å−1) Ess (meV)

A 150 75 8.4× 10−3 24
B 200 100 6.3× 10−3 19.1
C 400 200 2.7× 10−3 10.4
Pyramid 200 100 6.3× 10−3 22.3

Figure 9 also shows that the s–s interaction gets weaker as the dots get bigger. In fact,
we observe that the s–s interaction scales approximately as 1/r0, wherer0 is a characteristic
length for the dot given byr0 = λ 3

√
hb2, whereλ is a numerical constant,h the height, andb

the radius of the dot. In table 2 we show values of 1/r0 for the different dots considered in this
work. The 1/r0 behaviour of the s–s interaction can be seen by comparing the ratios ofEssand
1/r0 for the three dots:EA

ss:E
B
ss:E

C
ss = 1.3:1.0:0.5 whereas 1/rA

0 :1/rB
0 :1/rC

0 = 1.3:1.0:0.4.
While the present data point to a 1/r0 scaling ofEss in lens-shaped SADs only, there is no
reason to believe that it should not hold for pyramidal dots as well.
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